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Among the large number of methods for computation of turbulent boundary layers (e.g., [1-6]) the turbulent viscosity 

model for computation of two-dimensional turbulent boundary layers stands out because it has been tested on a large body of 

experimental data. Most of those experiments were chosen by the Stanford conference [8] as control experiments for comparing 

numerical computations of turbulent boundary layers. Test computations in [7] were carried out for flows over a wide range 
of positive and negative pressure gradients, permeability parameters (injection and suction), roughness, heat exchange, and 
Mach and Reynolds numbers, including the laminar-turbulent transition zone. Moreover, this model has been used very 

extensively in computations of detached flows in angular configurations within the framework of the viscid-inviscid interaction 

problem [9]. All of this leads to the conclusion that this model of turbulent viscosity is one of the best in the class of algebraic 
models for computations of two-dimensional flows. Three-dimensional turbulent boundary layers are the object of many 

experimental and computational-theoretical studies. Analysis of such flows was the subject of, e.g., a symposium in West 
Berlin in 1982 [5]. The symposium focused particular attention on economical methods of computing the characteristics of 

three-dimensional boundary layers, which are used successfully in practice. It was noted that only limited experimental 
information is suitable for testing numerical computations of three-dimensional turbulent flows. Computation of three- 

dimensional flows requires the maximum possible computer resources and it is not always justifiable to make the problem more 
complicated by using differential models of turbulence. In this study we have verified the applicability of the algebraic model 

of turbulent viscosity [7] under the conditions of three-dimensional boundary layers. 
The system of equations of a three-dimensional turbulent boundary layer in an orthogonal coordinate system has the 

form 
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where u, v, and w are the components of the velocity vector; p is the density; p is the pressure; j = 0, x, y, z are the Cartesian 
coordinates and j = 1, az = xaO, x, 0 are the polar coordinates (x, y, 0); and rxy and r~ are the components of the tensor 

of tangential stresses, which are dominant in the boundary-layer approximation: 

au 8w 
% = ~' v,= - P - ' ~ '  L ,  = ~' _3= - pw '~ ' .  (5) 

Here/~ is the dynamic viscosity; u ' ,  v ' ,  and w' are the pulsating components of the velocity in turbulent flow; and an overbar 
denotes averaging over time. The coordinate system is chosen so that the x axis coincides with the direction of the mainstream, 
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the z axis lies on the surface of the body, and the y axis is perpendicular to the surface. The solution is sought in the region 

f] (xo < x _< XL, Zo ----- Z _< Zk, 0 --< y < Y). The boundary conditions for the system (1)-(4) are the usual ones for a boundary- 

layer problem: no slip on the surface of  the body (u = 0, v = 0, and w = 0 for y = 0), distribution of  the parameters of 

viscous flow on the outside boundary of the boundary layer [either the velocity distributions u = u(x, z), w = w(x, z) or the 

pressure-coefficient distributions Cp(x, z) = (p (x, z) - p**)/(0.5p~,U** 2) are given, and the angles o~ of  deviation of the 

streamlines of the external flow from the direction of the mainstream for y = Y]. The boundary conditions for the boundary- 

layer equations are not given in the planes z~ = const and XL = COnst. In this study we considered only flows that have either 

a plane of  flow or a symmetry plane (zo = const). The flow parameters on such planes can be found by solving the quasi-two- 

dimensional boundary-layer problem and can then be used to specify the initial data. If  we differentiate Eq. (3) with respect 

to z and take w z = 3w/az  to be a new independent variable (also noting that w = 0), we obtain a system of  equations [instead 

of (1)-(4)] for the symmetry plane or plane of flow: 

0_. au 0p ~_~.. 
pu  ax + pu--~y = - 0x + ay '  (6) 
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av., aw puw a2P + ; (7) 
P" ~, + P " ~ + P ~ + J  x a~ ~ ~yLa=) 
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In the plane Xo = constant given are either the experimental velocity profiles or the power-law profiles of the projection of the 

velocity vector onto the direction of the streamline of the external flow Uo/U0: = (y/Y)~/" (the index e denotes that the quantity 

belongs to the outside boundary of  the boundary layer and the index 0 denotes initial data). The exponent n is calculated, in 

accordance with [10], from n = 2/(H - 1), where H is the boundary-layer form parameter. The profile that is normal to the 

streamline of the external flow of the velocity component wo is given on the assumption that the profiles have a delta 

configuration in the plane of the hodograph (uo, w0) [11]: 

u o Uo 2 a  0 
w'---L' = - - t g  flo for - -  < , and 
u0~ uo, uo, tg/~o + 2a o 

w~ - 2 a  o 1 --  in the remaining profiles.  
U~ 

The profiles Uo and Wo are then converted to the profiles u and w by means of the formulas v o = ~Uo2 + Wo 2, c~ = o~ o + 

arctg(wo/uo), u/u e = (v0/V0e)COS~, and w/u e = (v0/v0e)sin~. With u and w known, the profiles of the third component v were 
obtained from the numerical solution of the equation derived from Eqs. (1) and (4) by eliminating the derivative 0u/0x from 
them: 

au 3u au aw 1 ap 1 ~ au 
o - - -  u - - +  w - - -  u - - =  - - - - +  ; i t  

ay ay az az P ~z P a Oy 

To describe the two components of the Reynolds stress tensor which appear in (5), we introduce their relation to the field of 

mean velocities in the form proposed by Boussinesq [10]: 

_p--'ff'r~ = i.t.,Ou / Oy, - -p  w' u' = I . t , zaw/  (?,y. 

The turbulent viscosity is also assumed to be locally isotropic, i .e.,/z, = /z~ = ~ .  The turbulent viscosity ~t has the form 

v(oy) (~) (9) 

The quantity l in (9) is determined, in accordance with [7], from 

t =  ky[l  - exp ( - r~ ) , , t  + e x p ( -  Ah )J for y ,<  u  

2(} 
26 for y "- -~--. (I0) 

In (10) h is the height of a roughness irregularity; A, is a constant that depends on the type of roughness; k = 0.4 is the 

Karman constant; ~- = q"~y + ~ ; in the region y < XUk we calculate ~'xy and ~-~ as 

ap .u au. a_.pp ( a ~ )  
% = (~',)" + ~ + P ( ~ )  J '  ;~ = ( ; ) "  + Y a~ + P " J"  
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Here the index w denotes parameters on the surface of the body. These expressions are obtained by expanding r~y + Zy~ in a 

Taylor series near the surface of the body and substituting the results into Eqs. (1) and (3), respectively. A set of correction 

functions for k and A is proposed in [7]. In the case of incompressible flows the assumption is that A = 26, and 

2 = ,lo/(1 + tan h r'-), 

where k 0 = 0.09; F = x/'3.6.10-SRellV~O[~l*; and ~o = (~I*/rw)[VP[ is the Clauser equilibrium principle; Re I = 
(u~po.51*)//xo.; and IV~l  = ,/ '(0~/ax) 2 + (0~/az) 2. For computation of laminar and transition boundary layers an 

intermittence coefficient ~/is introduced in much the same way as in [7]: 

(x b, x~ are the coordinates of the beginning and end of  the zone of the laminar-turbulent transition zone). The "overall" 

viscosity coefficient, therefore, is/.in = /~ + 3,/~t, and Eqs. (5) have the form 

Ou Ow 
% = / , ~ ,  t~ = / ~ .  

The quantity 5"~, which enters into the correction functions, is the displacement thickness of  the three-dimensional boundary 

layer; it has the same physical meaning as in the case of plane flow and is calculated from the equation [12] 

__a . 5" ~ * a x ( u ) l - u , - ) +  (w,~; -v~  D = o .  (11) 

6 6 

Here % = ~ a 61, = f ( . - u) l ~ dy . 6 ~*~ = f ( ~ - w) l vAy pertainto v. and not to u~ and %. This substitution 
0 o 

prevents divergence of the integrals as w --, 0. In a three-dimensional flow the integrals ~11" ~*12 are physically meaningless 

and are not components of the displacement thickness. On the flow surface Eq. (11) becomes 

* * 6" ax lu'(51 - 5~)I + 61(w~) , - u,(12), = O, (12) 

where. (5*u), = j dy. 
o ue 
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The differential equations (I)-(4), (6)-(8), (11), and (12) are replaced by finite-difference analogs, using an implicit 

scheme of the second order of  approximation in the coordinates y and z and the first order in the coordinate x. The resulting 
systems of algebraic equations were solved by marching technique for coordinates x and z and vector tridiagonal inversion for 

the y coordinate. The computational grid is chosen to match the conditions of the specific problem, with a rigid mesh size in 
the x and z directions and adjustment of the mesh size in the y direction as the boundary layer grows. The grid spacing is 
assumed to be uneven along all three coordinates. The given algorithm was the basis for a computing program for the BESM-6 
computer, which was used for all the computations made here. 

RESULTS OF C O M P U T A T I O N S  

Computations were carried out for two configurations: a boundary layer on a plate with an obstacle in the form of a 
vertical cylinder or profde in the flow on the lee side of a delta half-wing, set at the angle of  attack. Experimental data, 

obtained in [11, 13], as well as calculations [14], performed using the differential k - e  model of  turbulence, are available for 
such flows. Such flows were chosen because of the recommendation of the EUROMECH 60 conference [8] that they be used 

as control problems for comparing different methods of calculating three-dimensional boundary layers, since in those problems 
the characteristics of  the flow depend on all three coordinates. 

Plate with Cylinder.  The method of computation and the algorithms of the program we first calculated a laminar 

boundary layer on a plate with an obstacle in the form of a vertical round infinite cylinder. The outside flow for such a problem 
is determined from the formula [15] 

(Az) 2 - (Ax) 2 Azax 

u = 1 - i(Ax)2 + (Az)212, w = --2 [(Ax)2 + (Az)~l 2. 
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Here Az = (z - Zo)/a; and Ax = (x - x0)/a. The range of the calculation and the initial data was chosen as follows: xo/a = 
7.492, a = 061 m, u~. = 30.5 m/see, L = 3.2192 m, Zk/a = 1.4 (the index ~ denotes mainstream parameters). Figure 1 shows 

the calculated values of the local friction coefficient for five cross-sections (z/a = 0, 0.5, 0.8, 1.0, and 1.4 - lines 1-5, 

respectively; the crosses represent the data of [15], circles represent the data of [16], and triangles represent the data of  [17]). 
A comparison of the calculated results with the results of  other studies enables us to conclude that algorithms and programs 

function properly and we can proceed to verify the applicability of  the given relations to turbulent viscosity. 

A turbulent boundary layer for the same problems was calculated for the initial data, as in [14]: Re0H = 

Uo.511**po,/t~o, = 50,000, x/a = - 4 ,  511"* = 0.11a, H = 1.26, and zkla = 3. Figure 2 shows the values of the angle of the 

limiting streamlines (a) and the x component of the momentum thickness 511"* (b) (the dashed lines represent the data of [14]). 

Some differences from computations using more complicated models for turbulent viscosity (the k - e  model was used in [14]) 

manifest themselves in the earlier position of the break line (at a distance x/a = - 1.7 from the axis of  the cylinder) than in [14] 

(at rda = - 1.54). Otherwise the agreement is entirely satisfactory. 

Plate with Profile. Computations were performed for a turbulent boundary layer on a plate with an obstacle in the 

form of a symmetric infinite profile [I1], whose front section was formed by a round cylinder with radius a = 0.3048 m. The 

computation was started from a distance x/a = - 2.5 from the axis of the cylinder and was continued up to the break line. The 

mainstream velocity u** = 60.96 m/see. Smoothed experimental velocity profiles were chosen as the initial proftles. The 

parameters of the outside flow were calculated from the measured distribution of the pressure coefficient Cp = (p - p=)/(0.5 

p| 2) and the angles a of  the deviation of the streamline of the outside flow from the direction of the mainstream. Figure 

3 shows the distribution of  the friction coefficient Ce for six cross sections (zla = 0, 0.0833, 0.1667, 0.25, 0.3333, and 0.4167 

- lines 1-6, respectively; the symbols represent the experiments of [11]). Figures 4 and 5 show the profiles of the longitudinal 
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velocity component u/ue and the angle of deviation/~ of the local streamlines in the thickness of the boundary layer from the 

direction of the streamlines of the outside flow for one cross section z/a = 0.4167 (solid line - calculation; symbols - 

experiment; profiles 1-7 correspond to the sections for the coordinate x/a, measured from the axis of the cylinder: -2 .42,  
-2.33,  -2 .25,  -2 .17,  -2 .08,  -2 .03,  and -1.93).  The comparison of the calculated results with the experimental data is 

satisfactory on the whole. The calculated value of the turn of the flow inside the boundary layer is observed to lag somewhat 

(by roughly 12%) behind the turn found experimentally as the break line is approached. This may be the case because the 
direction of the mainstream and the axis of the model in the experiment were misaligned (by about 1.16 cm) and as a result 

the transverse pressure gradient of the outside flow in the calculation was too low in comparison with the actual conditions of 
the experiment. 

Delta Wing. In this example we calculate a turbulent boundary layer induced by a vortex, which comes off the 
windward side of a delta half-wing, set at an 8 ~ angle of attack (Fig. 6). The vortex then attaches itself to the lee side near 

the root chord and breaks away for a second time near the wing edge. The region of computation lies between the line of vortex 
attachment on the lee side and its break line. This flow was studied experimentally in [13] and computed in [14], using the k - e  

turbulence model. The computation was carried out in a polar coordinate system in the region r = 2.53-5.53 m and tg/0 = 

0.25-0.29 for a mainstream velocity U~ = 60 m/sec. In contrast to [14], the condition for conical flow (0uJax = 0, ap/ax 

= o, awe/ax = 0) was not used in the computation since it was not consistent with the experimental data (the values of the 
pressure coefficient Cp measured in [13] were not constant along the wing). In our computation, therefore, we used the Cp 

distribution measured experimentally for the given outside flow. Figure 6 illustrates the structure of the flow and the calculated 
friction coefficients (solid curve) and shows the calculated [14] (dash-dot line) and experimental [13] (symbols) results. Figure 

7a shows the angles of deviation ~w of the streamlines near the wall and Fig. 7b shows the values of the momentum thickness 
611"* (circles) and the boundary-layer form parameter H (crosses). A comparison was made only for one section, in which the 

measurements were made in the experiment. The values of the dimensionless polar angle ~/0 (0 = 14 ~ are measured along 
the horizontal axis. As follows from Figs. 6 and 7, the results of calculations of the integrated boundary-layer characteristics 

agree satisfactorily with the experimental data and the calculations [14]. 
In summary, the results of our computations make it possible to conclude that the proposed model of turbulent viscosity 

is suitable for computation of three-dimensional incompressible boundary layers. In [7] this model was used for calculations 

of compressed flows and in [9], for calculations of two-dimensional detached flows on the basis of the boundary-layer theory. 
Since this model has been demonstrated to be applicable for a wide range of conditions, it is desirable to check the possibility 
of also using it for computations of ultrasonic detached flows on the basis of averaged Navier-Stokes equations. 
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